Alok Puranik Mentor: Adrian Vladu

Fifth Annual PRIMES Conference, 2015

Outline

- Background
 - The Problem
 - Motivation
 - Construction
 - Certification

2 Planted model

- Planting eigenvalues
- Analysis
- Distinguishing random from planted model

3 Hardness of RIP

- Proof of hardness
- Reductions

Limitations in Approximating RIP Background

The Problem

RIP Definition

Definition

A vector x is k-sparse if it has at most k nonzero components

Definition

An matrix V satisfies the Restricted Isometry Property with order k and Restricted Isometry Constant δ if for every k-sparse vector x,

$$(1-\delta)\|x\|^2 \le \|Vx\|^2 \le (1+\delta)\|x\|^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background

The Problem

Alternate Defintion

Definition

A matrix V is RIP- k,δ if for every submatrix A created by selecting k columns from V and every k-dimensional vector x,

$$(1-\delta)\|x\|^2 \le \|Ax\|^2 \le (1+\delta)\|x\|^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Background

Motivation

Compressive Sensing

• Given a compressible (sparse) signal vector and a few measurements with noise, can we reconstruct the original signal accurately? (Candès and Tao)

Background

Motivation

Compressive Sensing

- Given a compressible (sparse) signal vector and a few measurements with noise, can we reconstruct the original signal accurately? (Candès and Tao)
- If the sensing matrix satisfies RIP with $\delta = \sqrt{2} 1$, we can recover the original

Background

Construction

Random Construction

- Draw elements from certain sufficiently concentrated distributions e.g. $\mathcal{N}\left(0,\frac{1}{\sqrt{n}}\right)$
- This (almost) always works in theory, but is non-deterministic (Baraniuk et al.)

• Deterministic algorithms currently don't achieve the same bounds

Limitations in Approximating RIP Background Certification

- Random construction succeeds with very high probability, but is not guaranteed
- A certification algorithm to verify generated matrices would be useful

Limitations in Approximating RIP Background

Certification

Naive Algorithm

 To verify RIP-k,δ for a matrix V, check every k-column submatrix A of V

- Inspect eigenvalues of $A^T A$
- Requires time exponential in k

Limitations in Approximating RIP Background

Certification

Naive Algorithm

 To verify RIP-k,δ for a matrix V, check every k-column submatrix A of V

- Inspect eigenvalues of $A^T A$
- Requires time exponential in k
- Certification is actually NP-Hard

Limitations in Approximating RIP Planted model

Planting eigenvalues

Adversarial Matrices

• We can alter the generation process to produce matrices that "look" random

• We try to fool a decision algorithm: try to plant a large eigenvalue and break RIP

Planted model

Planting eigenvalues

Breaking RIP with Singular Values

- Large eigenvalues in $V^T V$ correspond to large singular values of V
- We leave most of V completely random, fix k columns to have a large singular value

$$V = \left[\begin{array}{c|c} Q & QM \end{array} \right]$$

$$V^{T}V = \begin{bmatrix} Q^{T}Q & Q^{T}QM \\ \hline M^{T}Q^{T}Q & M^{T}Q^{T}QM \end{bmatrix}$$

Planted model

Planting eigenvalues

Hiding Singular Values

- We plant a large eigenvalue in $M^T Q^T Q M$
- *M* must have a large singular value
- We can manipulate the singular value decomposition of *M*:
 - Decompose random matrix as UΣV^T where U and V are unitary
 - **2** Construct Σ' by setting first diagonal entry of Σ to a planted singular value, setting the rest to something convenient

3 Reconstruct *M* as $U\Sigma'V^T$

Limitations in Approximating RIP Planted model Analysis

Statistical Analysis

- Elements of the matrix Q are independent, identically distributed Gaussian, $\mathcal{N}\left(0, \frac{1}{\sqrt{n}}\right)$
- Distribution of elements of $Q^T Q$ is highly concentrated: within $O\left(\frac{\log n}{n}\right)$
- Elements of $M^T Q^T Q M$ follow the same bounds with high probability

Planted model

Distinguishing random from planted model

Distinguishing Random from Planted

- Inspecting elements directly give no indication
- Inspecting eigenvalues of full matrix detects this implementation of planted model

Limitations in Approximating RIP Hardness of RIP Proof of hardness

Proof of hardness

An oracle that certifies RIP would be enable an efficient solution to Spark, and therefore subset sum.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Bandeira et al.)

Certifying RIP for arbitrary k and δ is NP-Hard

Limitations in Approximating RIP Hardness of RIP Proof of hardness

Limitations of proof

• Weak result: shows hardness only for arbitrary matrix

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Says nothing about approximability

Limitations in Approximating RIP Hardness of RIP Reductions

Reductions

- Small set expansion: if approximating SSE is hard, then approximating RIP is hard (Natrajan and Wu)
- Densest k-subgraph: if detecting an n^{1/2-ε} clique in a random graph G(n, 1/2) is hard, approximating RIP is hard (Koiran and Zouzias)

Limitations in Approximating RIP Hardness of RIP Reductions

Sum Of Squares

- SOS: a framework for proving statements using the trivial inequality and basic rules of algebra
- A degree-2*n* SOS proof proves a statement using only intermediate inequalities of polynomials of degree at most 2*n*
- Unbounded degree SOS is a complete proof system, bounded is not
- Max clique with an $n^{\frac{1}{3}}$ clique embedded in a random graph $G(n, \frac{1}{2})$ is unsolvable by degree-4 SOS

(日) (同) (三) (三) (三) (○) (○)

• For this particular implementation of the planted model, degree 2 SOS proof is sufficient

Hardness of RIP

Reductions

Sum of Squares Approximation

Theorem (Koiran and Souzias)

Assume a matrix Φ has unit column vectors and satisfies RIP of order k and parameter ϵ . For $m \ge k$, Φ also satisfies RIP of order m and parameter $\epsilon \left(\frac{m-1}{k-1}\right)$.

We can set n = m and examine the matrix's eigenvalues to get a very coarse approximation.

Theorem

Sum of squares of degree 2 can differentiate between a matrix that is RIP of order k with parameter δ and one that is not RIP of order k with parameter $\delta\left(\frac{n-1}{k-1}\right)$.

Conjectures

Future Research

Conjecture

Planted model is complete - planted framework can be improved in order to prove any hardness results.

Conjecture

Degree-4 SOS is insufficient to approximate RIP to within any constant factor.

Conjectures

Acknowledgements

I would like to thank the following:

- MIT PRIMES
- Adrian Vladu
- My parents